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Figure 1: Example drone-view images of GTA-UAV dataset, from multiple scenes, altitudes, and attitudes.

A Introduction
This document provides supplementary materials for the
main paper. Fig. 1 shows some drone-view examples of our
GTA-UAV dataset from multiple scenes, altitudes, and at-
titudes. Specifically, Sec. B offers more details about orga-
nization and statistics of GTA-UAV. Sec. C provides more
experiment setup details about training and testing pipeline.
Additional experiments and corresponding analysis are pre-
sented in Sec. D. Some visualization is provided in Sec. E.
The limitation and discussion are put in Sec. F.

B GTA-UAV Dataset
Dataset Collection
In GTA-UAV dataset, 33,763 drone-view images are col-
lected from the whole game map of commercial video game
GTAV. We use an open-source automated framework Deep-
GTA (Kiefer, Ott, and Zell 2022), to simulate UAV flights
at various altitudes and attitudes, then collect drone-view
images. The simulated flight scenes cover city, mountain,
desert, forest, field, and seaside, with flight altitudes ranging

from 80m to 650m and various flight attitudes. Compared
to existing UAV geo-localization datasets (Zheng, Wei, and
Yang 2020; Zhu et al. 2023; Dai et al. 2023; Xu et al. 2024),
this provides an opportunity to explore more complex and
comprehensive localization tasks. For each drone-view data
instance, we provide comprehensive meta-data, including:

• GPS information

• Flight altitude

• Flight attitude

• Camera parameters

• Paired satellite-view images

Based on the GPS information and camera attitude, the
satellite-view images are paired by calculating the IOU of
the approximate ground coverage from two FOV. The re-
lated ground coverage could be approximated by Eq. 5.
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Dataset Statistics
As illustrated in Fig. 2, we collect drone-view images fo-
cused on six altitude categories ranging from 80m to 650m.
We set the camera at a 90◦ on the pitch axis, making it per-
pendicular to the ground. Throughout the simulated flight,
the drone-view is normally distributed on the roll and pitch
axes with ranges of [−10◦, 10◦] and [−100◦,−80◦], respec-
tively. The yaw angle is randomly distributed. For scene cat-
egories, we collect scenes including urban, suburban, moun-
tain, forest, coast, and sea area. In data collection, the ur-
ban category occupies a major portion, which is consid-
ered for two main reasons: (1) The urban areas in the game
map have more details and less homogenization; (2) Most
existing datasets focus on urban areas, making it easier to
align with them to evaluate generalization capabilities. The
data also contains many areas that are difficult to recognize,
such as pure sea areas. We did not exclude them currently
for mainly two reasons: (1) One reason is that in the cross-
area setting, the sea data is actually mainly distributed in the
training set, and the reason for the failure in the cross-area
setting is more the generalization ability to unseen scenes;
(2) Another reason is that this phenomenon actually reflects
some bad cases of visual localization of drones in real-world
applications (that is, the recognition of some scenes is unre-
alistic).

The samples from same-area and cross-area settings we
mentioned in main paper are shown in Fig. 3. As the same
illustration in the main paper, the training and test drone-
view images from the same-area setting are sampled from
the sharing area, while the training and test drone-view im-
ages from the cross-area setting are sampled from seperate
areas.

C Experiment Setup Details
Including Dataset
University-1652 University-1652 dataset (Zheng, Wei,
and Yang 2020) consists of 37,854 drone-view images and
951 satellite-view images from 701 university buildings,
where the task is to match the drone-view to the accord-
ing satellite-view and vice versa. All images are collected
through Google Earth simulation, and the image pairs have
a strict one-to-one aligned correspondence.
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Figure 2: Data statistics of GTA-UAV.

SUES-200 SUES-200 dataset (Zhu et al. 2023) contains
24,120 drone-view images acquired by the drone at four
different heights and only 200 corresponding satellite-view
of the same target scene. The data is also collected from
Google Earth simulation, using a discrete sampling method,
and cannot be extended from retrieval to localization tasks.
Due to its limited satellite-view images, the retrieval task on
this dataset is relatively simple and lacks practical signifi-
cance.

DenseUAV In DenseUAV dataset (Dai et al. 2023), 9k
drone-view and 18k satellite-view images of 14 university
campuses are collected, where drone-view images are cap-
tured in the real-world low-alltitude setting. Due to its dense
sampling method, localization tasks can be performed on
this data, while the pairing process still follows a perfect
matching format.

UAV-VisLoc UAV-VisLoc (Xu et al. 2024) includes 6,742
high-altitude drone-view images and 11 satellite maps cov-
ering the 11 corresponding areas. The released available
dataset and technical report do not tiles satellite maps or pair
drone-view images with satellite-view images.

Evaluation Metrics
Spatial Continuity Index (SDM@K) Following
DenseUAV (Dai et al. 2023), the SDM@k is an evalu-
ation metric combines the characteristics of Recall@k
while also considering the performance of localization,
which is defined by Eq. 6:

SDMk = (K − k + 1)/ exp(s× dk), (6)



Table 1: Performance on GTA-UAV with label smoothing.

Methods Cross-Area Same-Area

R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
LInfoNCE, ϵ = 0.05 53.44% 79.55% 64.51% 73.69% 402.42m 77.55% 95.47% 85.40% 87.64% 197.06m
LInfoNCE, ϵ = 0.1 53.40% 79.79% 64.60% 74.16% 395.55m 75.49% 95.38% 84.36% 87.72% 193.98m
LInfoNCE, ϵ = 0.2 52.75% 79.71% 64.13% 73.85% 393.86m 74.85% 95.65% 83.87% 87.97% 189.23m

Lweighted-InfoNCE 55.91% 81.07% 66.56% 76.35% 342.05m 84.95% 97.59% 90.15% 88.03% 149.07m

(a) Same Area. (b) Cross Area.

Figure 3: Data samples coverage in the whole game map. In
the same-area setting (left), red dots represent training and
test samples, where they share the same area. In the cross-
area setting (right), red dots represent training samples and
blue dots represent test samples, where they are sampled
from cross area.

where di =
√
(xq − xi)2 + (yq − yi)2, and K − k + 1 is

the weight of k − th result. In our experiments setup, all
distances are in terms of meters, and the s is set to 0.001.

Implementation Details
In our GTA-UAV dataset, there are 33,763 drone-view im-
ages and 14,640 satellite-view images. In the cross-area set-
ting, we divide the entire game map into two mutually exclu-
sive groups, with 15,693 drone-view images used for train-
ing and the other 18,070 drone-view images used for testing.
In the same-area setting, both the training set and the test set
are sampled from the entire game map, with 26,964 drone-
view images used for training and the reamining 10,799
drone-view images used for testing. All 14,640 multi-level
satellite-view images are used as the retrieval gallery during
test.

To evaluate the transferability and generalization capa-
bilities of the GTA-UAV dataset and the proposed method
for UAV geo-localization tasks, we conduct trasnfer ex-
periments on a recently released dataset UAV-VisLoc (Xu
et al. 2024), as discussed in the main paper. We select 7
regions totaling 4,427 drone-view images according to the
area size and image quality as validation data for transfer-

ability. Based on the undefined dataset, we divide the 7 satel-
lite maps using an identical tiling methods with GTA-UAV,
and pair them by estimating the IOU between the FOV of
two views. By testing different pre-trained models on the
UAV-VisLoc dataset in both zero-shot and fine-tuned set-
tings, we demonstrate the trasnferability of the GTA-UAV
data in UAV geo-localization tasks that resemble real-world
scenarios in the main paper.

D More Experiments
Analysis of Weighted InfoNCE
As formulated in Eq. 7, Eq. 8, and Eq. 9, our proposed
weighted InfoNCE can be viewd as a form of label smooth-
ing based on weights for standard InfoNCE.
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αq = σ(k, IOUqr+) =
1

1 + exp(−k × IOUqr+)
(9)

Unlike label smoothing, which uses a fixed hyper-
parameter ϵ for flexibility, our weighted InfoNCE calculates
positive weights αq based on IOU. In this way, the degree
of smoothing could be adaptively controlled through posi-
tive weights αq , leading to more flexible learning targets. As
results in Tab. 1, our weighted-InfoNCE could improve the
results on both retrieval and localization metrics under dif-
ferent label smoothing settings.



Table 2: Performance at different altitudes.

Flight Altitude Cross-Area Same-Area

100m+200m 300m+400m 500m+600m R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
✓ - - 52.39% 77.00% 63.08% 76.24% 419.22m 74.63% 93.12% 82.76% 89.79% 233.66m
- ✓ - 59.95% 84.82% 71.04% 74.57% 355.32m 87.81% 99.15% 93.06% 88.45% 115.61m
- - ✓ 55.32% 82.33% 66.18% 70.61% 403.67m 91.43% 99.90% 95.22% 84.53% 160.66m

Table 3: Performance comparison of models at different scales.

Approach #Params #Flops Shared W. R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Cross-Area
ViT-Small/16 21.6M 12.4G ✓ 49.79% 77.44% 62.25% 72.57% 430.49m
ViT-Medium/16 38.9M 22.0G ✓ 52.67% 79.67% 64.13% 73.31% 420.01m
ViT-Base/16 64.3M 37.1G × 42.09% 71.97% 54.84% 67.34% 547.26m
ViT-Base/16 64.3M 37.1G ✓ 55.91% 81.07% 66.56% 76.35% 342.05m
ViT-Large/16 307.2M 174.8G ✓ 59.26% 83.42% 69.73% 76.89% 337.29m

Same-Area
ViT-Small/16 21.6M 12.4G ✓ 82.49% 95.74% 88.71% 86.92% 225.51m
ViT-Medium/16 38.9M 22.0G ✓ 82.87% 96.49% 89.04% 87.19% 211.12m
ViT-Base/16 64.3M 37.1G × 85.20% 96.82% 90.30% 87.68% 167.46m
ViT-Base/16 64.3M 37.1G ✓ 84.95% 97.59% 90.15% 88.03% 149.07m
ViT-Large/16 307.2M 174.8G ✓ 85.01% 97.85% 90.36% 88.58% 134.22m

Impact of Altitudes

Flight altitude is an important variable in UAV geo-
localization, as it directly affects the scale and the amount
of scenery within the FOV. Considering the image retrieval
task, different flight altitudes primarily have the following
two effects. (1) The first effect is the scale difference be-
tween drone-view and satellite-view images. In the satellite-
view database we construct, we use four zoom level tiles
as the reference map. These four zoom levels cover an im-
age scale range of approximately 70m to 560m, with a scale
difference of a factor of 2 between consecutive levels. This
means that within the continuously distributed UAV flight
altitudes ranging from 80m to 650m, some images will have
a high scale match with the reference map, while others will
exhibit scale differences. (2) The second effect is the dif-
ference in scene appearance across different scales. When
the flight altitude is low, there are fewer objects and scenes
within the FOV for matching, increasing the probability of
misjudgment. As the flight altitude increases, the resolution
of scenery within the FOV decreases, potentially leading
to a loss of fine-grained information. Existing UAV geo-
localization datasets derived from real captures or Google
Map simulations are often limited in altitude, which pre-
vent this critical issue from being addressed. Our GTA-UAV
dataset covers a wider range of flight altitudes, introducing
flight altitude as a variable in this task. To validate the ef-
fect of data at different altitudes on geo-localization tasks,
we divide the training set into three groups: 100m+ 200m,
300m+400m, and 500m+600m, then evaluate their perfor-
mance separately. The results in Tab. 2 show that the model’s
performance varies across data from different altitudes. No-
tably, in the training with 500m+600m data, the larger cov-

erage area of individual images results in more virtual edges
between images, leading to fewer available training samples
after mutually exclusive sampling. This is unfavorable for
mining hard negatives in contrastive learning, thereby limit-
ing the effectiveness of the learning process.

Model Scale Evaluation

As a supplement to the evaluation of different architectures
in the main paper, we expand the experiments to the Vision
Transformer (ViT) (Dosovitskiy et al. 2021) models with
different parameter scales, as detailed in Tab. 3. All these
models are with a patch-size 16× 16. The results show that
the performance follows a certain form of scaling law. In ad-
dition, the results with shared-weight encoder for cross-view
images are better than without it, especially in the cross-area
setting. This is because weight sharing can be viewed as a
natural regularization term for cross-view models.

Satellite to Drone Retrieval

In addition to the original UAV geo-localization task (drone-
view to satellite-view retrieval, D2S), we also extend the task
to include satellite-view to drone-view (S2D) retrieval. This
means finding the closest drone-view image given a satellite-
view image. Tab. 4 shows the results comparing different
training methods, where the proposed weighted-InfoNCE
with Mutual Exclusive Sampling achieves the best perfor-
mance on both cross-area and same-area settings. Fig. 4
shows the meter-level localization accuracy based on differ-
ent thresholds.



Table 4: Performance of Sattellite-view to Drone-view (S2D) retrieval on GTA-UAV comparing different training methods.
MES means Mutual Exclusive Sampling.

Methods Cross-Area Same-Area

R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Positive-only
Triplet Loss (Ltriplet) 76.43% 86.37% 65.54% 84.18% 371.16m 86.41% 96.54% 87.46% 88.86% 135.84m
InfoNCE Loss (LInfoNCE) 77.87% 88.09% 65.82% 85.60% 367.02m 88.03% 97.23% 89.97% 89.61% 107.47m
InfoNCE Loss (LInfoNCE, w/. MES) 79.19% 89.50% 67.92% 86.27% 344.99m 89.36% 97.31% 90.65% 90.07% 100.66m
Ours (Lweighted-InfoNCE, w/. MES) 82.69% 89.69% 72.05% 87.10% 323.36m 93.97% 98.97% 94.61% 91.24% 68.13m

Positive + Semi-positive
Triplet Loss (Ltriplet) 45.86% 62.25% 37.39% 75.68% 560.06m 77.18% 98.21% 82.23% 94.19% 52.71m
InfoNCE Loss (LInfoNCE) 59.12% 76.06% 52.49% 85.71% 312.56m 78.08% 98.97% 82.74% 94.00% 55.49m
InfoNCE Loss (LInfoNCE, w/. MES) 63.90% 78.64% 53.94% 84.86% 309.55m 82.05% 97.95% 85.36% 94.02% 53.95m
Ours (Lweighted-InfoNCE, w/. MES) 77.72% 90.61% 69.53% 89.02% 236.02m 91.41% 99.62% 92.94% 94.17% 50.90m

Figure 4: Meter-level localization accuracy of different methods (S2D) on cross-area (left) and same-area (right).

E Visualization
Feature Visualization
Human reasoning for cross-view geo-localization is typi-
cally based on landmarks or regions of interests within FOV.
To further illustrate how the model performs drone-view to
satellite-view matching, we extract the last hidden state of
the ViT model (Dosovitskiy et al. 2021) and visualize it by
averaging and unpatching, as shown in the Fig. 5. In both
positive and semi-positive pairs, we could see that the model
primarily focuses on regions with distinguishable features,
such as buildings, vegetation, and roads.

Retrieval and Localization Examples
Here we provide some examples of the retrieval and local-
ization results of GTA-UAV to show a better understanding
of the task design and the data content in Fig. 6 ∼ 21.

F Limitations and Discussion
Our dataset aims to align with real-wolrd UAV geo-
localization tasks, moving beyond the perfect one-to-one
matching strong assumption in existing datasets and cover-
ing multi-altitude, attitude, and scene data that is difficult to
capture in real datasets. Nonetheless, the scenes in current
game maps are still highly homogeneous, filled with a large
amount of similar data, and lack the diversity found in the
real world. On the other hand, the imaging effects, object
scales, and visual styles within the game world still exhibit
certain biases compared to the real world. To further align

Figure 5: Feature heatmap for (positive) pair and (semi-
positive) pair. The two pictures on the left side shows the
drone-view query, and the pictures on the right side are the
corresponding positive/semi-positive satellite-view.

with real-world tasks, the domain gap between synthetic and
real data is an issue that needs to be considered. On the other
hand, we still follow the retrieve-to-locate paradigm from



existing research. However, such a coarse retrieval approach
naturally leads to significant localization errors, especially
in our partially matching paried dataset.

As a special setting of visual place recognition, UAV-
based visual localization is constrained by the scale of the
data. Some existing works based on visual foundation mod-
els (e.g., DINOv2) demonstrate generalizable performance
across different scenes. However, in our tests, its perfor-
mance on GTA-UAV is still suboptimal. This indicates that
expanding the training paradigm of general visual place
recognition models (achieving a ”GPT moment”) remains
an important open problem to be addressed.

Finally, single-modality visual methods are constrained
by the limitations of a single-sensor system. How to inte-
grate multimodal sensor information (e.g., text, point clouds,
etc.) is also an interesting and meaningful research direction.
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(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 6: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 7: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 8: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 9: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 10: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 11: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 12: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 13: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 14: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 15: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 16: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 17: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 18: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 19: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 20: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)



(a) Drone-view query

(b) Top-5 satellite-view retrieval results.

Figure 21: Query example and retrieval results under cross-area training setting. (positive matched, semi-positive matched)
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